【問題】(P∧Q)⇔(Q∧P)が成り立つことを確認せよ(対象律)-数理論理学
注意点

正しく証明・計算の結果が学術的に本当に正しいかどうかは保証できません…ご了承くださいm(__)m
学生の方であれば、疑問に思ったところなどは教授・助教授、その他周りの方に確認してくださいね。
もし、コメント等でご指摘いただければ有難いです。

【問題】$(P \land Q) \leftrightarrow (Q \land P)$を確認せよ

命題変数$P$、$Q$に対して$(P \land Q) \leftrightarrow (Q \land P)$を確認せよ。

回答

命題変数$P$、$Q$に対して$P \land Q$と$Q \land P$の真理値表が一致することを確認します。

命題変数$P$、$Q$はそれぞれ真(T)、偽(F)の2パターンがあります。よって、すべての組み合わせは「真と真」「真と偽」「偽と真」「偽と偽」になるため、その4通りを確認します。

$P \land Q$と$Q \land P$の真理値表

$P \land Q$と$Q \land P$の真理値表(表)は下記の通りです。

$P$ $Q$ $P \land Q$ $Q \land $P
T T T T
T F F F
F T F F
F F F F

※参考:$P\land Q$の真理値表を示せ

$(P \land Q) \leftrightarrow (Q \land P)$

真理値表より、$P \land Q$と$Q \land P$の真理値表が一致することを確認できました。よって、$(P \land Q) \leftrightarrow (Q \land P)$。

Q.E.D.

備考

この結果から、$P \land Q$(論理積)は左右を反転させても成立することが分かりました。これを対象律といいます。

キーワード

気になる人は調べてみてね。

数理論理学、論理積($\land$)、対象律、命題変数、論理式、真理値表、Q.E.D.

注意点

正しく証明・計算の結果が学術的に本当に正しいかどうかは保証できません…ご了承くださいm(__)m
学生の方であれば、疑問に思ったところなどは教授・助教授、その他周りの方に確認してくださいね。
もし、コメント等でご指摘いただければ有難いです。